Apolipoprotein E3-Leiden contains a seven-amino acid insertion that is a tandem repeat of residues 121-127.
نویسندگان
چکیده
Apolipoprotein (apo) E3-Leiden is a variant of apoE that is associated with dominant expression of type III hyperlipoproteinemia and that is defective in binding to the low density lipoprotein receptor. Therefore, the structure of apoE3-Leiden was investigated. Upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis apoE3-Leiden and its 22-kDa amino-terminal thrombolytic fragment migrated with a higher than normal apparent molecular weight. The structural abnormality of apoE3-Leiden was determined by sequencing its CNBr-, tryptic-, and Staphylococcus aureus V8 protease-generated peptides. In contrast to normal apoE3, which has a cysteine at residue 112, apoE3-Leiden does not contain any cysteine and has an arginine at position 112 (as does apoE4, which also completely lacks cysteine). The basis for the molecular weight difference was determined to be a seven-amino acid insertion that is a tandem repeat of residues 121-127 of normal apoE3, i.e. Glu-Val-Gln-Ala-Met-Leu-Gly, resulting in apoE3-Leiden having 306 amino acids rather than 299. The negatively charged glutamyl residues within the insertion compensates for the arginine substitution at residue 112; thus apoE3-Leiden focuses in the E3 position. The low density lipoprotein receptor binding activities of both intact apoE3-Leiden and its 22-kDa thrombolytic fragment were determined in an in vitro assay. Although apoE3-Leiden had only about 25% of normal binding activity, its 22-kDa thrombolytic fragment had nearly normal binding, suggesting that the carboxyl-terminal domain of apoE3-Leiden modulates the receptor binding function of its amino-terminal domain.
منابع مشابه
The carboxyl terminus in apolipoprotein E2 and the seven amino acid repeat in apolipoprotein E-Leiden: role in receptor-binding activity.
Both apolipoprotein (apo) E2 and apoE-Leiden (tandem repeat of amino acids 121-127) are associated with type III hyperlipoproteinemia and bind defectively to low density lipoprotein receptors. Removing the carboxyl terminus of both variants (residues 192-299) increases receptor-binding activity, suggesting that the carboxyl terminus modulates activity. To identify the region(s) that modulated b...
متن کاملChylomicron remnant uptake in the livers of mice expressing human apolipoproteins E 3 , E 2 ( Arg 158 → Cys ) , and E 3 - Leiden Sung
Apolipoprotein E2 (apoE2) and apoE3-Leiden cause chylomicron remnant accumulation (type III hyperlipidemia). However, the degree of dyslipidemia and its penetrance are different in humans and mice. Remnant uptake by isolated liver from apoE / mice transgenic for human apoE2, apoE3-Leiden, or apoE3 was measured. In the presence of both LDL receptor (LDLR) and LDL receptor-related protein (LRP), ...
متن کاملApolipoprotein E Polymorphism in an Iranian Hypercholestrolemic Population
Apolipoprotein E (apo E) is a structural constituent of several serum lipoprotein classes. It plays an important role in lipid metabolism by acting as a ligand for low-density lipoprotein (LDL) and chylomicron remnant receptors. Three common alleles called e2, e3 and e4 have been described, which code for three protein isoforms (E2, E3 and E4). The polymorphism is clinically significant, and it...
متن کاملUse of synthetic peptide analogues to localize lecithin:cholesterol acyltransferase activating domain in apolipoprotein A-I.
The major protein of high density lipoprotein (HDL), apolipoprotein (apo) A-I, is the major activator of the plasma enzyme lecithin:cholesterol acyltransferase (LCAT). A consensus amino acid sequence has been defined for the eight, 22-residue long, tandem amphipathic helical repeats located in the carboxy-terminal region of apo A-I. A series of 22 and 44mer synthetic peptide analogues of the co...
متن کاملMultiple functional domains of Tat, the trans-activator of HIV-1, defined by mutational analysis.
The tat gene of HIV-1 is a potent trans-activator of gene expression from the HIV long terminal repeat (LTR). To define the functionally important regions of the product of the tat gene (Tat) of HIV-1, deletion, linker insertion and single amino acid substitution mutants within the Tat coding region of strain SF2 were constructed. The effect of these mutations on trans-activation was assessed b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 264 35 شماره
صفحات -
تاریخ انتشار 1989